Neoadjuvant Chemotherapy: A New Standard for Muscle Invasive Bladder Cancer?

Nabil Ismaili
Department of Medical Oncology, Sheikh Khalifa Hospital and Mohammed VI University for Health Science, Casablanca, Morocco

Abstract

Bladder cancer is the seventh most common cancer and the ninth most common cause of cancer deaths for men worldwide. Cystectomy with pelvic lymph nodes dissection is the standard local treatment of muscle invasive bladder cancer (MIBC) (T2–T4). In the last decade, the management of MIBC had become multidisciplinary involving peri-operative chemotherapy (neo- or adjuvant chemotherapy). Randomized trials and meta-analyses confirmed the survival benefit of neoadjuvant chemotherapy before local treatment (surgery and/or radiotherapy). Consequently, this sequence should be considered as standard treatment of choice, for patients with good performance status (0–1) and good renal function. The benefit of adjuvant chemotherapy is not clear for patients treated with primary surgery.

Keywords: Bladder cancer, Chemotherapy, Neoadjuvant, Adjuvant

Introduction

Bladder cancer is the ninth most commonly diagnosed cancer in the world with more than 380,000 new cases per year and more than 150,000 deaths per year in 2008. It is the fourth most common cancer in men and the eighth most common cancer in women in the USA. It is the sixth most common cancer in Morocco and the most common cause of cancer death in men in Egypt. Smoking is the strongest risk factor of this disease. In Africa, especially in Egypt, chronic infection by Schistosoma haematobium was the most common etiology. Bladder cancers are called muscle invasive (pT2) when they infiltrate the bladder muscle. Standard treatment in this setting is radical cystectomy with pelvic lymphadenectomy. In the last decade, the management of muscle invasive bladder cancer (MIBC) had become multidisciplinary involving perioperative chemotherapy (neo— or adjuvant chemotherapy) [1–4].

Review

Since 1990, the MVAC (methotrexate, vinblastine, doxorubicin and cisplatin) regimen was considered as a standard treatment in first line metastatic setting. Two randomized phase III trials confirmed the superiority of MVAC to CISCA and CDDP, respectively, in terms of overall response rate and overall survival. The MVAC is effective, but particularly toxic. The main high grade 3–4 toxicities were febrile neutropenia, alopecia, vomiting, anorexia, and renal insufficiency. To improve the result of MVAC, the intensification of the same protocol as HD–MVAC (all drugs delivered in one day every 14 days), was investigated in a phase III EORTC trial including more than 250 patients. Although overall survival, the primary end—point of the study was identical in the two arms, the HD–MVAC improved complete response rate from 10% to 25%, and progression free survival from 8.5 months to 9.1 months (p=0.03). In addition, the systematic use of Granulocyte Colony–Stimulating Factors (GCS–F), made the HD–MVAC better tolerated. Gemcitabine and cisplatin regimen was tested in first line metastatic setting in a phase III randomized trial. It has an equivalent efficacy as compared to MVAC and has a better safety profile. In the first line setting, MVAC, HD–MVAC and gemcitabine–cisplatin were all considered as three standard chemotherapy first line treatments of metastatic urothelial bladder cancer [5–8].

Perioperative chemotherapy may be administered either before or after surgery. MIBC was a systemic disease. After radical surgery, half of the patients develop distant metastasis and die of the disease. The benefit obtained in ORR and particularly in CRR of chemotherapy in metastatic setting lead the investigators to assess the impact of peri—operative chemotherapy.
in the treatment of MIBC. Neoadjuvant chemotherapy had several advantages: the early treatment of micro-metastatic disease; the systemic treatment is better tolerated by allowing the preoperative administration of chemotherapy; the evaluation of chemo-sensitivity of tumor; and the down-staging, which facilitates surgery (4). In addition, response and mainly complete response to chemotherapy, have significantly improved overall survival according to a result of a recent meta-analysis (4). The first pivotal trial was conducted by the US intergroup, and the over-treatment with neoadjuvant chemotherapy was the delayed radical treatment in progressive patients (10). Patients were randomized to receive surgery alone or neoadjuvant chemotherapy based on MVAC followed by radical treatment (surgery and/or radiotherapy). This trial showed that NAC improved significantly the pathologic complete response rate (pCR) in 49% with HD-MAVAC, and high grade toxicities occurred in 26% with neo-adjuvant GC (15). In a recent review of 7 non-randomized trials and 164 patients, NAC with gemcitabine – cisplatin (GC) was investigated. The authors showed that pathological down-staging to pT0 occurred in 26% with neo–adjuvant GC (19). In a recent phase 2 trial, HD–MAVAC was also tested in neo–adjuvant setting in 39 patients. Pathologic response of pT1N0M0 was achieved in 49% with HD–MAVAC, and high grade 3 toxicities occurred in only 10% and no neutropenic fevers or treatment related death was noted. Indeed, one year PFS was better in pathologic responders (89% vs 67%) and radiologic responders (86% vs 62%) (18).

Based on these recent published data, we can conclude that pathological down-staging to pT0 was achieved in 49% with HD–MAVAC, and high grade 3 toxicities occurred in only 10% and no neutropenic fevers or treatment related death was noted. Indeed, one year PFS was better in pathologic responders (89% vs 67%) and radiologic responders (86% vs 62%) (18).

Table 1: Pivotal phase 3 trials investigating neoadjuvant chemotherapy plus surgery vs surgery in invasive bladder cancer

<table>
<thead>
<tr>
<th>Organization</th>
<th>Year</th>
<th>Number of patients</th>
<th>Primary end point</th>
<th>Neo-adjuvant treatment</th>
<th>Radical treatments</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC/EORTC [11,12]</td>
<td>1999</td>
<td>976</td>
<td>Overall survival</td>
<td>CMV</td>
<td>Radiotherapy or cystectomy</td>
<td>OS benefit confirmed at 8-year (HR, 0.84; 95% CI, 0.72–0.99; p = 0.037)</td>
</tr>
<tr>
<td>SWOG (INT-0080) [10]</td>
<td>2001</td>
<td>317</td>
<td>Overall survival</td>
<td>MVAV</td>
<td>Radiotherapy or cystectomy</td>
<td>At 8.7 years, median OSI was 77 months vs. 46 months (p = 0.06) in favor of neoadjuvant chemotherapy</td>
</tr>
</tbody>
</table>

Abbreviations: CMV : cisplatin, methotrexate, and vinblastine; MVAC : methotrexate, vinblastine, doxorubicin, and cisplatin; OS : overall survival.
that neoadjuvant chemotherapy should be considered as a standard treatment of MIBC. Different regimens can be used in neoadjuvant setting: MVAC, HD–MVAC and gemcitabine plus cisplatin. HD–MVAC and gemcitabine – cisplatin have a better safety profile than standard MVAC and can be considered as the preferred options (17,18).

No clear evidence defines the impact of adjuvant chemotherapy in the management of MIBC. Randomized trials evaluating adjuvant chemotherapy in MIBC have small size and do not clearly confirm the survival benefit of this sequence. The literature reports at least 6 randomized trial with contradictory results. A small meta-analysis of the ABC group based on individual data of approximately 500 patients treated in 6 randomized trials showed that adjuvant chemotherapy with cisplatin reduced the risk of death by 25% with an absolute benefit in survival of 9% at 3 years (19). Consequently, adjuvant chemotherapy should not be considered as a standard treatment and can be considered as a treatment option in patient with pT3–pT4/pN+ MIBC (17).

Competing interests

The authors declare that they have no competing interests and received no external funding to prepare this study.

Abbreviations:

MIBC: Muscle invasive bladder cancer;
MVAC: Methotrexate, Vinblastine, Doxorubicin, Cisplatin;
CISCA: Cisplatin, Cyclophosphamide, Doxorubicine;
EORTC: European Organization of Treatment of Cancer;
D–MVAC: intensified MVAC;
ORR: Overall response rate;
CRR: complete response rate;
NAC: Neoadjuvant chemotherapy;

References


