Table of Contents

Original Articles

Obesity and High Risk Pathological Features of Papillary Thyroid Carcinoma: A Retrospective Analysis of a University Hospital in Pakistan
Shakeel Uz Zaman, Mohammad Sohail Awan, Mohammad Ahsan Sulaiman

06

Quantification of circulating plasma cell free DNA fragments in patients with oral cancer and precancer
Ami Desai, Shreenivas Kallianpur, Abin Mani, Manisha S. Tijare, Samar Khan, Megha Jain, Vidhi Mathur, Rinku Ahuja, Vijay Saxena

11

Clinical and microbiological profile of infections during induction phase of acute myeloid leukemia
Sonia Parikh, Parijat Goswami, Asha Anand, Harsha Panchal, Apurva Patel, Rahul Kulkarni, Bhadresh Shastri

18

Breast Cancer Risk factor awareness and utilization of screening program: A cross-sectional study among women in the Northern Emirates
Prashanth Hegde, Jyothi Pande, Hanaa Hosny Adly, Padma V. Shetty, Jayakumari

24

BRCA1 and BRCA2 Germline Mutation Screening in Western Algeria using High Resolution Melting Analysis (HRM)
Amina Chami Sidi Boulenouar, Florence Coulet, Farida Mesli Taleb Bendjab, Fatima Zohra Boudinar, Rachid Senhadji

31

Colon Cancer in Patients below Age of 50 Years: Kuwait Cancer Control Center Experience
Mohamed Salah Fayaz, Gerges Attia Demian, Heba El–Sayed Issa, Sadeq Abu-Zlouf

38

Awareness, understanding, attitude, and barriers toward prescribing modern cancer immunotherapies in the Arabian Gulf countries

45

The Need for Regulatory Reforms in the Use of Opioids for Pain Management and Palliative Care in the Middle East
Bassim Jaffar Al Bahrami and Itrat Mehdi

52

Sporadic colon cancer in Lebanon: A clinicopathological study
William A. Nehmeh, Marc Rassy, Claude Ghorra, Pamela Abdayem, Cyril Tohmé

60

Case Reports

Malignant Phyllodes tumor in a young female: Report of a rare case
Priyanka Anand, Namrata Sarin, Amul K. Butti, Sompal Singh

64

Cutaneous Metastasis of Sigmoid Adenocarcinoma to Face and Scalp at Initial Diagnosis: Case Report
Mariam Aloita, Jaroslav Nemec

70

Cervical metastasis of testicular cancer: Case report and review of literature
Guhan Kumarasamy, Anusha Balasubramanian, Baharudin Abdullah

73

Metachronous Testicular Seminoma After Testicular Tumor
Xh. Çuni, I. Haxhiu, Sh. Telegrafi, M. Berisha, N. Rexha, M. Myftari, P. Nuraj, S. Mehmeti, A. Fetahu, R. Dervishi, S. Manxhuka, F. Kurshumliu

78

Conference Highlights/Scientific Contributions

- **Highlights of the International Conference on Genitourinary and Gynecological Cancers, Kuwait Conference (GUG–KC): Recent Updates, 14–16 April 2018, State of Kuwait**

82

- **News Notes**

87

- **Advertisements**

91

- **Scientific events in the GCC and the Arab World for 2018**

92
Original Article

BRCA1 and BRCA2 Germline Mutation Screening in Western Algeria using High Resolution Melting Analysis (HRM)

Amina Chami Sidi Boulenouar1, Florence Coulet2, Farida Mesli Taleb Bendiab1, Fatima Zohra Boudinar3, Rachid Senhadji1

1Lab. Bio.Dev.Diff.Université Oran 1 Ahmed Ben Bella, Faculté des Sciences de la Nature et de la Vie, Département de Biologie, Oran, Algérie.
2APHP, Oncogenetic Laboratory Paris, France.
3Service d’Oncologie, Hôpital Militaire Régional universitaire d’Oran, Algérie.

Abstract

Breast cancer is the leading cause of cancer deaths in Algerian women. Our aim is to analyze BRCA1 and BRCA2 genes mutations in 100 Algerian patients with a family history suggestive of genetic predisposition to breast cancer. BRCA1 and BRCA2 mutations were searched by High-Resolution Melting (HRM) analysis, followed by direct sequencing, and Multiplex Ligation-Dependent Probe Amplification (MLPA) for large deletions or duplications. An unclassified variant c.5117G>C, p.Gly1706ALA and a pathogenic mutation c.2125_2126insA, p.Phe709TyrfX3 were detected in the BRCA1 gene. No large deletions or duplications were detected with MLPA. One deleterious mutation c.250C>T, p.Gin84X, and one unclassified variant c.9364G>A, p.Ala3122Thr were identified in BRCA2 gene. The pathological significance of this variant has to be specified and analysis of its segregation in the family and differs from those provided in the literature. Although on a limited cohort, our findings suggest a higher frequency of BRCA1/2 mutations in Algeria and it would be of interest to search for the presence of these pathogenic mutations in other family member for preventing the risk of cancer.

Keywords: Breast cancer, BRCA1, BRCA2, Western Algeria, High Resolution Melting Analysis, HRM

Introduction

Breast cancer is still a major cause of death by cancer among Algerian women(1). Studies of breast cancer in North Africa (including Morocco, Algeria, Tunisia, and Libya) have shown BC patterns similar to those in the Middle East. Over the region, BC accounts for the majority of cancers in women. Age-standardized incidence rates (ASRs) per 100,000 for BC in 2002 was 23.5 in Algeria and 29 in Tunisia, to nearly 37 in Morocco(2–4). The size and grade of breast tumors in the Maghreb are increased, while the median age of onset (48) in Algeria, Morocco, and Tunisia, is more than ten years earlier than the European/North American median of 61. The size and grade of breast tumors are also higher in North Africa than elsewhere (5).

Linkage studies conducted in the 1990 led to the discovery that mutations in the BRCA1 and BRCA2 tumor suppressor genes conferred a high risk of breast cancer (4, 5). These genes also predispose to ovarian cancer and a substantial percentage of families with breast and ovarian cancer harbor mutations in BRCA1 and/or BRCA2 gene (6–8).

Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for women who carry BRCA1 mutation and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20–30 per 100 person–years) until age 80 years. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% for BRCA1 and 26% for BRCA2 carriers. Breast cancer risk increased with increasing number of first– and second–degree relatives diagnosed as having breast cancer for both BRCA1 and BRCA2 (9).

To date, very few reports have been published about the spectrum of BRCA1 and BRCA2 mutations in Algerian women (10–13) and about 11% of breast cancer cases in Algeria occur in women of less than 35 years of age, and 55% of cases at less than 50 (14). The young age at
onset and high grade suggest the influence of genetic factors such as mutation of BRCA. The knowledge about the identification of BRCA1 and BRCA2 mutations in Algerian familial breast/ovarian cancer will lead to better understanding of genetic risk factors of this disease.

Materials and Methods

Participants

Patients in this study were referred through the military teaching hospital of Oran. Two hundred and fifty (250) patients with a breast and/or ovarian cancers were selected. 100 index cases were chosen with familial breast cancer. Data on the occurrence of tumours, histopathological characteristics and pedigree data were collected. In addition, age at initial diagnosis was recorded. The selection criteria for the families were based on: (a) Women with a history of two or more relatives on the same side of the family with breast and ovarian cancer; (b) Two or more cases of breast and ovarian cancer in first–degree relatives; (c) Cases of bilateral breast cancer; (d) Breast or ovarian cancer before the age of 40; (e) Male relative with breast cancer. Prior to collecting blood, all selected patients and relatives were informed about the objectives of the study and that their DNA samples would be analyzed for mutations in genes associated with hereditary breast cancer. Only 49 females and one male agreed to the protocol of this study and provided written informed consent. Ethical approval was obtained from the appropriate institution.

Mutation analysis

Blood DNA was obtained from each of the index cases. Genomic DNA was extracted from peripheral blood collected on EDTA, in accordance with the manufacturer’s protocols. The mutation analysis approach used is based on BRCA1 and BRCA2 mutations screening by high–resolution melting (HRM) curve analysis followed by direct sequencing. Samples for which no pathogenic mutation was found in BRCA1 gene were analyzed by direct sequencing. The G1706A variant is located in the first BRCT domain (amino acids 1650–1736) and has been partially characterized by predictive modelling and some functional assays.

Results

Overall, 4 mutations were identified among four unrelated patients, 2 in BRCA1 and 2 in BRCA2. Table 1 shows the clinical features of BRCA1/2 mutation–positive patients. A distinct germline missense mutation in BRCA1 was located in exon 18 (Figure 1). A nucleotide change (c.5117G>C) was identified in codon 1706, that causes an amino acid change Gly–Ala. The C–terminal region is a highly conserved structure containing two BRCA1 C–terminal (BRCT) tandem repeat domains. Missense changes within this motif cause protein folding defects and inhibit transcriptional transactivation.

Protein structure modelling analysis conducted by Lovelock and collaborators (2006) predicted that the substitution of an alanine at position 1706 would cause a moderate increase in hydrophobicity and size. The glycine at position 1706 occurs within an α–helix structure running from leucine 1701 to isoleucine 1707. Substitution of glycine with a larger alanine at 1706 was predicted to disrupt a bend in the helix, possibly with functional consequences if normal protein function is reliant on the
The maintenance of this conformation. The substitution was predicted to cause clashes between the side chains of valine 1687 and valine 1713, which were not relieved by changes in the side chain rotamers of each residue.

The histopathology analysis of the tumour from the index case indicated an infiltrative ductal carcinoma with ER/PR/HER2−negative (Table 2).

The second pathogenic mutation in BRCA1 gene is: c.2125–2126insA (Figure 2). It’s a germline frameshift mutation located in exon 11b leading to the production of a premature truncated proteins. This mutation was found in a woman diagnosed at the age of 38 for breast cancer and has a personal and strong family history suggestive of genetic predisposition to breast cancer. Histological analysis indicated infiltrative ductal carcinoma (Table 2). No mutation was detected in BRCA2 gene.

The third deleterious mutation is c.250C>T (Figure 3). The substitution C>T in codon 84 causes an early end of translation of the protein. This mutation was detected in a man with breast cancer diagnosed at the age of 63. The

Table 1: BRCA1/BRCA2 germline mutations identified in Algerian families with a Hereditary History of Breast Cancer.

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Exon</th>
<th>Codon</th>
<th>Designation</th>
<th>Hgvs Cdna</th>
<th>Hgvs Proteine</th>
<th>Mutation Type</th>
<th>Pheno-type</th>
<th>Family History</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td></td>
<td></td>
<td></td>
<td>c.5117G>C</td>
<td>Gly1706Ala</td>
<td>M</td>
<td>BC</td>
<td>2 BC</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>709</td>
<td>2244insA</td>
<td>c.2125_2126insA</td>
<td>Phe709TyrfsX3</td>
<td>F</td>
<td>BC</td>
<td>2BC/3BC</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
<td></td>
<td>c.250C>T</td>
<td>P.Gin84x</td>
<td>N</td>
<td>MBC</td>
<td>2BC/PC</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>3122</td>
<td>-</td>
<td>c.9364G>A</td>
<td>P.Ala3122Thr</td>
<td>M</td>
<td>BBC</td>
<td>2BC</td>
</tr>
</tbody>
</table>

Acronyms: BC=breast cancer; MBC= male breast cancer; BBC=bilateral breast cancer; M=missense mutation; F= Frame shift mutation; N=nonsense mutation.
Figure 3: Genomic DNA sequence analysis of exon 3 of the BRCA2 gene in patient number three. Transition C>T on nucleotide 250.

The electropherogram indicates the position of the mutation (bold) within the wild type BRCA2 DNA sequence (NCBI NM_000059.3. Sequencing profile for subject 3 with BRCA2 c.250C>T mutation, DNA from blood sample, heterozygous for mutation.

Figure 4: Genomic DNA sequence analysis of exon 25 of the BRCA2 gene in patient number four. Transition G>A on nucleotide 9364.

The electropherogram indicates the position of the mutation (bold) within the wild type BRCA2 DNA sequence (NCBI NM_000059.3. Sequencing profile for subject 4 with BRCA2 c.9364G>A mutation, DNA from blood sample, heterozygous for mutation.

Table 2: Clinicopathological characteristics of breast cancer patients with BRCA1/BRCA2 mutations.

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Sequence variant HGVS nomenclature</th>
<th>Proband</th>
<th>Age at diagnosis</th>
<th>Histologic al type</th>
<th>SBR grade</th>
<th>ER status</th>
<th>PR status</th>
<th>Her2 status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c.5117G>C</td>
<td>BC</td>
<td>28</td>
<td>IDC</td>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>c.2125_2126insA</td>
<td>BC</td>
<td>47</td>
<td>IDC</td>
<td>III</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>c.250C>T</td>
<td>MBC</td>
<td>69</td>
<td>IDC</td>
<td>II</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>c.9364G>A</td>
<td>BBC</td>
<td>31</td>
<td>IDC</td>
<td>III</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Acronyms: BC=breast cancer; MBC=male breast cancer; BBC=bilateral breast cancer; IDC=infiltrative ductal carcinoma; ER=estrogen receptor; PR=progesterone receptor; Her2=human epidermal growth factor receptor 2

Discussion

The prevalence and spectrum of BRCA mutations in North African breast cancer (BC) and/or ovarian cancer (OC) families have not yet been thoroughly studied. Three studies have investigated BRCA gene mutation in BC patient with affected relatives in Tunisia[23–26]. In Morocco, three recent studies have investigated BRCA germline mutation in BC patient[27–29]. To date, few molecular genetic studies of BRCA1/BRCA2 germline mutation have been reported in the Algerian population. To the best of our knowledge, our report is the first study using HRM and MLPA analysis of a population from western Algeria. Thirteen index cases and one male with breast cancer
have been examined for germline mutation in the BRCA1/BRCA2 genes. Four pathogenic mutations have been identified (2in BRCA1 and 2 in BRCA2) in 4 of 50 families. DNA sequences of sporadic cases arising before the age of 38 and familial cases revealed five deleterious mutations in BRCA1 among 51 early-onset sporadic cases, and four mutations among 11 families\(^\text{30-32}\). In their study, Cherbal and collaborators (2010)\(^\text{11}\) described analysis of the BRCA1 gene in 86 individuals from 70 families from an Algerian cohort with a personal and familial history suggestive of genetic predisposition to breast cancer. Three distinct pathogenic mutations were detected in BRCA1 and two pathogenic mutations were detected in BRCA2. Recently, three deleterious mutations were found in the BRCA1 gene and four mutations in the BRCA2 gene in an eastern Algerian population\(^\text{13}\).

These mutations in Algerian patients with breast cancer were previously described in the BIC database. We note that one mutation in BRCA2 gene (c. 250C>T) has been found in a male with breast cancer and he had also a family history of cancer (brother with prostate cancer and daughter with breast cancer at early onset). According to Arena et al, Diez et al and Tournier et al\(^\text{30-32}\), the presence of a male with breast cancer is suggestive of BRCA2 mutation and all men with breast cancer should be regarded as being possibly inherited and should be fully investigated. This mutation was already described in the UMD database but only identified in women with breast cancer and is more frequent in Western European patients\(^\text{33}\).

Our results show that the c.5117G>C mutation in BRCA1 gene was detected in the patient with early onset breast cancer (28-years old) with ER−, PR− and Her2− profiles. This patient had a triple negative disease, suggesting a relationship between breast cancer “triple negative” and breast cancer with BRCA1 gene mutation, as reported by Reis–Filho and Tutt, (2008)\(^\text{34}\); Turner and Reis–Filho, (2006)\(^\text{35}\). We note that sequencing or high resolution melting (HRM) analysis of the coding and flanking intronic regions of BRCA1 and BRCA2 in this patient revealed no other variation. Three Algerian pedigrees were ascertained to be carriers of the G1706A variant but the histopathology data of the tumours from this patient are not available\(^\text{12}\). The G1706A variant is in favor of a likely pathogenic character. In addition, this mutation is predicted to be damaging with a score of 1.000 by PolyPhen-2 prediction program. The feature of this variant is unknown at this time. We note that these pathogenic mutations described in our study differ from those provided by the literature and also differ from those seen in Tunisian and Moroccan populations. These findings could suggest a large BRCA1 and BRCA2 mutations spectrum not only in Algerian population but also in North African populations.

Conclusion

In our experiment, HRM was used to identify BRCA1 and BRCA2 mutations in western Algerian patients with a family history suggestive of genetic predisposition to breast cancer. Our findings could suggest a larger frequency of BRCA1/2 mutations in Algeria. We hope that it would be interesting to develop a BRCA1 and BRCA2 mutation database for Algerian and North African population. To explain the role of these genes in Algerian breast cancer, further studies are needed with a larger samples size. Detailed examination of the clinical data and pedigree findings are important for counselling patient with familial breast cancer and for the eligibility for genetic testing as routine test. It would be of interest to search this pathogenic mutation in the other family members and adopting a targeted prevention strategy. Finally, we suggest that the national public health of Algerian population should develop a breast cancer screening program.
Sequence variants screening in BRCA1/2 genes, Amina Chami Sidi Boulenouar, et. al.

Acknowledgements

We deeply thank the patients and their families who granted consent for the use of their biological samples. We wish to thank Pr.Florent Soubrier and his staff of oncogeneticunit of PitiéSalpêtrière Hospital for their technical support. We also thank the clinicians and all staff of oncology service of military teaching hospital of Oran for their assistance in data and sample collection. We would like to thank Dr. Myah Waddud for proofreading this manuscript.

References

